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Abstract. We obtain approximations for the critical temperatfg) of ¢-state ferromagnetic

Potts models on one-dimensional lattices with algebraically decaying ferromagnetic pair
interactions, i.e. decaying ag/, with 1 < # < 2. Initially we use a cluster mean-field method

to get approximations to the critical temperature and we look at increasingly large clusters. This
gives us a sequence of ever more accurate approximate values which can be used as input to various
extrapolation algorithms. We see that as the interaction decreases more slowly and the value of
¢ increases we obtain more and more accufatestimates. Our best estimates we believe to be
correct to four-figure accuracy.

1. Introduction

Much effort has gone into the investigation of one-dimensional Ising models with algebraically
decaying interactions. In a very recent paper Luijten arideB[1] in their introductory section

gave an excellent overview of the subject and its history over the last 30 years. One of the
major advances in the theory of such systems was made by Aizesirabj2]. In their work,

which concerned when a phase transition could be proven to be present or not present, they
found it useful to broaden the class of models they considered beyond those involving Ising
spin variables. Specifically they considergedtate Potts models of which the Ising model is

a special case with = 2.

In general, thg # 2 cases have received much less attention thagp ta@ case but very
recently there has been an increasing interest in these cases. Most of the work has involved
obtaining estimates of the critical temperature and critical exponents. In particular, Glumac
and Uzelac [3] have used what they termed a finite-range scaling method, Bernardes and
Goulart Rosa Jr [4] have generalized a Bethe approximation approach originally presented for
theg = 2 case [5] to allj values, and most recently, in this journal, Cannas and de Magalhaes
[6] have used a renormalization group approach. In addition to estimates of the critical
temperature Glumac and Uzelac [7] have recently shown, using Monte Carlo simulations
in combination with finite-size scaling, that for a giverand for infinite-range interactions
falling off sufficiently slowly one has a first-order phase transition, while for more rapidly
decreasing interaction strengths one has a continuous phase transition.

We will present results which we believe to be more accurate estimates of the critical
temperature, for the case of very slowly decaying interactions, than any previously obtained.
We will use a cluster mean-field approach in combination with certain extrapolation techniques.
We base our belief in the accuracy of our results on two facts. Firstly, there is the very good
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comparison of our results [8] for the= 2 case with those of Luijten and &k [1]. Critical
temperature estimates in [1] for the special case of the Ising model are accurate to six significant
figures. For very slowly decaying interactions our results in [8] match this level of accuracy.
Second, Pearce and Griffiths [9] have shown that mean-field approximations become more
accurate ag increases and in the limjt — co are exact (see also Katori [10]).

Here we present results for the= 2, 3,4, 5, 8, and 16 cases. We present the= 2
results only to test the approach by comparing values with those of [1]. In the following section
we present the basis of our method along with the necessary notation, while in section 3 we
present our results. Some conclusions follow in section 4.

2. Cluster mean-field approximation and extrapolation techniques

We start with a one-dimensional lattice of sites where on'thaite we have a spin variable
o; whereo; = 1,2, ..., q. The Hamiltonian for oug-state Potts model can be written as

H = —Zﬁsm,oﬂ (1)
wherel|i — j| is the distance between sitesnd j and with the distance between adjacent
sites set equal to one. We consider only the ferromagnetic casg, €0. The Kronecker

delta interaction may be represented in various ways, one of which is by a dot product of two
(¢ — 1)-dimensional vectors pointing in tlkesymmetric directions of ag(— 1)-dimensional
hyper-tetrahedron. For more on this formulation of the Hamiltonian and a general review of
the Potts model, see Wu [11]. The order parameter for the general Potts model is

1
My(0) = —— <6<ai, 1) - 7> @
q-1 q
where the thermal average of the Kronecker delta function is given in the usual way by
(8(01, D)) =271 ) 8(0;, 1) exp(—BH({o'}) ©)

{o})
where Z is the partition function, the sum is over all configurations denotefrésand
B =1/kT.

To obtain estimates of the critical temperature for these systems we use a cluster mean-
field approach. We treat interactions between two spins in the cluster exactly and we replace
all interactions between a site in the cluster, hereisiémd a site outside the cluster, here site
j» with a mean-field interaction: e.gl;8(a;, o) is replaced byl;; M,8(;, 1) where

_ q 1
M, = —— -—. 4
T g-1 <M q) @
Then in the usual mean-field manner we require
(8(0c, 1)) =M )

wherec denotes the centre site of the cluster. For the three-site cluster we have

J _
H(o1, 02, 03) = —J[8(01, 02) + (02, 03)] — ?3(01, 03) — JM;(8(01, 1) +3(03, 1)
21 &1 - <1
x[2ﬁ+2n§]—1Mc,a(@, 1)[22;719]. (6)
For ann-site system using the Hamiltonian analogous to that given in (6) one can obtain an
expression for the left-hand side of (5) using (3). Then we find all valugd shtisfying (5).
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At high temperatures there is only one value/df satisfying (5) and this givest = 1/q

which is the disordered state. As we lower the temperature there comes a point when two
more solutions of (5) become present. When more than one solution is available one must
determine which solution is the ‘correct’ solution. One way of determining this is to calculate
the single-site free energy for each solution and choose the solution which corresponds to
the minimum free energy. This is the approach of Kihatral [12]; see also Wu [11]. The
calculation of the free energy can be quite difficult. We prefer to think of (5) as a fixed-point
equation and at low enough temperatures there will be more than one fixed point. When this
is the case one must determine which fixed point is the ‘correct’ fixed point. Rather than
consider the free energy we use a criterion which is much simpler to apply and which was
first announced, to our knowledge, in [13]. Specifically, we require the system to go to that
solution which has the ‘most stable fixed point’ of the fixed-point solutions of (5). By ‘most
stable fixed point’ we mean that fixed-point value which has associated with it the minimum
absolute value of the derivative with respecibof the left-hand side of (5) of all fixed-point
solutions to (5). One can easily show that for the one-site cluster, i.e. the standard mean-field
approximation first given by Kiharat al [12], the results by this method are identical with
those given by the free-energy approach. This method has also been shown to be effective
when studying the Potts model on the Bethe lattice and gives the same critical temperatures
as the free-energy approaches given by di Libett@l [14] and Ananikyan and Akheyan

[15]. It has also been shown to deal with Ising spin systems with multi-site interactions [13].
Not having to obtain expressions for free energies and, rather, only having to determine the
derivative of the left-hand side of (5) evaluated at the fixed-point value makes the determining
of the critical temperatures much easier.

As is typical in the case of mean-field approximations we have, first, that the mean-field
critical temperature is too high and, second, that by considering larger and larger clusters we
obtain better and better estimates of the critical temperature. Our philosophy in this paper
has been to concentrate on the general method and such characteristics as the accuracy of our
approximations as a function gfrather than emphasizing a pushing of the method with large
computer times. Here we have restricted our calculations to those that can be done on a personal
computer. We have used Mathematica for all computations. In the following we use clusters of
size 1, 3,5, 7, and 9 sites fgr= 2, 3, 4 and 5. As; becomes larger the calculations involved
in evaluating am-site cluster quickly grow. We have lookedzat= 8 and 16 but have obtained
results for 1-, 3-, and 5-site clusters. We have made a much more thorough investigation of the
g = 2 case [8] using clusters of up to 25 sites and, as stated earlier, present sofheesults
here only because they can be compared with the very accurate results obtained by Luijten and
Blote [1]. Hence they can be used as a general indicator of the accuracy of our methods.

Not only is it true that the larger the cluster size the more accurate the estimate of the true
critical temperature one obtains but, furthermore, if estimates are obtained for three different
cluster sizes and one assumes a simple power law correction of the form

T.(L) =T} +alL™" @)

this can be used to get an even better estimate of the critical temperature. 7I(Y)s the
critical temperature for the cluster size T'* is the exact critical temperature anéndz are
constants.

Still greater accuracy can be obtained if more than tf{€£) are available by applying
various extrapolation techniques. In particular, we present results based on the Vanden Broeck
and Schwartz transformations (hereafter VBS) [16] introduced into statistical mechanics by
Hamer and Barber [17]. The details of this algorithm along with our results are given in the
following section.
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Table 1. ¢ = 2 cluster mean-field critical temperature approximations.

Cluster 0

size

(sites) 11 1.3 15

1 211688969< T, < 21.1688970 78638984< T. < 7.8638985 32247506< T, < 5.2247507

3 210781950< T, < 21.0781951 76339568< T, < 7.6339569 48930790< T, < 4.8930791

5 210519341< T, < 21.0519342 75554363< T, < 7.5554364 47696027< T. < 4.7696028

7 210393905« T, < 21.0393906 75143954< T, < 7.5143955 47017431< T, < 47017432

9 210319940< T, < 21.0319941 74886715< T, < 7.4886716 46577098< T, < 4.665777 10
1.7 1.9 2.0

1 4.1085775< T. < 4.1085776 34994928< T, < 3.4994929 3898681< T. < 3.2898682

3 3.7001256< T, < 3.700 1257 0D319264< T, < 3.0319265 27978432< T, < 2.797 8433

5 35406578< T. < 3.5406579 8448782< T, < 2.8448783 25998101< T, < 2.5998102

7 3.4503708< T, < 3.4503709 271371409< T, < 2.7371410 24851717< T, < 2.4851718

9 3.3905201< T, < 3.3905202 2664 7585< T, < 2.6647586 24078178< T, < 2.4078179

3. Results

We first present the critical temperature values obtained for clusters of sizes 1, 3, 5, 7, and 9
sites using the mean-field cluster approximation approach. These are given in tables 1-4 for
g = 2-5, respectively. Similar results are given in tables 5 and G fer8 andg = 16 but

only for clusters of up to five sites. For the= 2 case we have presented our results using the
usual Ising model Hamiltonian

J
" Zf T ®)

whereo = £1. To convert these to critical temperatures which would be obtained using the
Pott’s model representation for the Hamiltonian, equation (1), one needs to merely divide the
critical temperatures given in table 1 by a factor of two. Only results involving up to 5-site
clusters rather than up to 25-site clusters given in [8] have been presented because this is the
level generally available for thg > 2 cases. We have considered six values df.1, 1.3, 1.5,
1.7, 1.9, and 2.0. Our results using equation (7) with sequences of site clusters 1, 3, 5 and 3,
5,7,and 5, 7, 9 are given in tables 7-10 o= 2-5, respectively. These results are labelled
FSS results although, technically they do not involve finite-size scaling.

For the case of = 2 and in the region where the system has a classical behaviour, i.e.
1 < 6 < 1.5, we can compare our results to those of Luijten anidtd3[1]. One sees that
though we have only considered clusters up to nine sites for the very slowly decaying case
we obtain reasonable agreement with the results of [1]. OFer 1.1 we get a four-figure
agreement with the results of [1]. In table 7 we have also listed the results from [3, 6]. For
all values of9 and using the 5, 7, 9 site cluster sequence our estimates are more accurate than
those presented in [6] using the renormalization group. For those of [3], i.e. those found using
finite-range scaling, our estimates are more accurate ferl.1, about equally accurate for
6 = 1.3, and less accurate for the otlfecases. The decrease in accuracy of our results as
6 increases is to be expected as a product of the mean-field approximation but as shown in
[9, 10] this will be counteracted to some extenyaacreases.

Before going to they # 2 cases we wish to present some details of the extrapolation
algorithm mentioned at the end of the previous section. The algorithm takes the critical
temperature estimates of the various cluster sizes as input and reduces this set of data to a
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Table 2. ¢ = 3 cluster mean-field critical temperature approximations.

Cluster 0
size
(sites)

11 13 15

7.6350656< T, < 7.6350657 28363018< 7. < 2.8363019 18844303< T, < 1.884 4305

© N 0wk

7.6118335< T, < 7.6118336
7.6054836< T. < 7.6054837
7.6025533< T, < 7.6025534
7.6008675< T, < 7.6008676

17

27751018< T,
2r558723< T,
27146 3979< T,
271407293< T,

19

< 27751019
< 2.7558724
< 2.746 3980
< 2.7407294

17934827< T,
17619248< T,
17454579< T,
17352139< 7,

< 1.7934828
< 1.7619249
< 1.7454580
< 1.7352140

2.0

© N 0wk

14818561< T, < 1.4818562
13671248< T, < 1.367 1429
13244864< T, < 1.3244865
13011781< T, < 1.3011782
12861575< T, < 1.286 1576

12621752< T,
11282163< T,
1076 1482< T,
1046 6966< T,
1027 1798< T,

< 1.2621753
< 11282164
< 1.0761483
< 1.046 6967
< 1.0271799

11865691 < T, < 1.1866592
10443909 < T. < 1.0443910
098827994« T. < 0.98827995
0956 14332< T, < 0.956 14333
(©3461935< T, < 0.93461936

Table 3. ¢ = 4 cluster mean-field critical temperature approximations.

Cluster 0
size
(sites)

11 13 15

© N 0w

6.4229201< T, < 6.4229202
6.407 1994< T, < 6.407 1995
6.4030214< T. < 6.4030215
6.4011231< T, < 6.4011232
6.4000425< T, < 6.4000426

1.7

2386 0096< T,
28436179< T.
23308998< T,
2324 8285< T.
283212825« T,

1.9

< 2.386 0097
< 2.3436180
< 2.3308999
< 2.324 8286
< 2.3212826

15852576< T, < 1.5852577
1521 0860< T, < 1.521 0861

1499 7424< T,
1488 9523< T.
14824112< T,

2.

< 14997425
< 1.4889524
< 14824113

0

© N U Wk

12465961< T, < 1.246 5962
1164 3908< 7, < 1.164 3909
11347868< T, < 1.1347869
11189811< 7, < 1.1189812
11089917< T, < 1.108 9918

10617918 < T,
964560 00< T,
©2749878< T,
0906 819 96< T,
0893264 11< T,

< 1.0617919

< 0.96456001
< 0.92749879
< 0.90681997
< 0.89326412

(998 18900< T.
B9440219%< T,
(B5401089< T,
(B3108480< T,
(B1583355< T

< 0.99818901
< 0.89440220
< 0.85401090
< 0.83108481
< 0.81583356

single, more accurate, value through a series of steps.

Using the notation of Hamer and Barber [17] one has for the general sequence
transformation that, given a sequence of valdgsvhich converge to a limiting valué,, one
forms a table of approximants tb., denoted by ., N] where [L, 0] = A, and the(N + 1)th
column of approximants is generated from tigh and(N — 1)th columns via the formula

1 + aN
[L,N+1]-[L,N] [L,N—-1]-[L,N]

1 N 1 )
[L+1, N]—[L,N] [L-1,N]—[L,N]
with [L, —1] = oco. Again, following Hamer and Barber, we refer to these approximants as
VBS approximants.

The above defines a broad class of transformations based on the definitipniedr the
case where the sequence converges as

AL~ Ao +biL ™ +bpL "2+ -

(10)
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Table 4. ¢ = 5 cluster mean-field critical temperature approximations.

Cluster
size
(sites)

0

11

1.3

15

© N 0wk

5726 2992< T, < 5.726 2993
57142771< T, < 5.7143772
5.7112665< T. < 5.711 2666
5.7098672< T, < 5.7098673
5.7090760< T. < 5.7090761

1.7

21272263< T, < 2.127 2264
20945192< T, < 2.0945193
20850183< T, < 2.0850184
20805807< T, < 2.0805808
20780312< T, < 2.0780313

19

14133228< T, < 1.4133229
13631369< T, < 1.3631370
1346 9549< T, < 1.346 9550
13389639< T, < 1.3389640
13342120< T, < 1.3342121

2.0

© N 0wk

11113920< T, < 1.1113921
1046 3696< T, < 1.046 3697
10235097< T, < 1.0235098
10115291< T, < 1.0115292
10040738< T, < 1.0040739

(046 6314< T, < 0.946 6315
(B689742< T, < 0.8689743
(B398340< T, < 0.8398341
(823 7598< T, < 0.823 7599
(8133193< 7T, < 0.8133194

0889 9268< T, < 0.8899269
(B066764< T. < 0.806 6765
07746511< T, < 0.7746512
0756 6175< T, < 0.7566176
0744 6945< T, < 0.744 6946

Table 5. ¢ = 8 cluster mean-field critical temperature approximations.

Cluster
size
(sites)

0

11

13

15

1
3
5

4.6622833< T, < 4.6622834
4.6553130< T, < 4.6553131
4.6535577< T, < 4.6535578

1.7

17319618< T, < 1.7319619
1712 1454< T, < 1.712 1455
1706 7456< T. < 1.706 7457

19

1150 7103< T, < 1.150 7104
11194543< T, < 1.1194544
11099961< T, < 1.109 9962

2.0

w

0.9048819< T, < 0.904 8820
0.8634437< T. < 0.8634438
0.8496063< T, < 0.8496064

07r707358< T. < 0.770 7359
07202533< T, < 0.7202534
07019715< T, < 0.7019716

07245676< T. < 0.7245677
0669 9642< T, < 0.669 9643
06495276< T, < 0.6495277

Table 6. ¢ = 16 cluster mean-field critical temperature approximations.

Cluster
size
(sites)

0

11

13

15

1
3
5

3.6479451< T, < 3.6479452
3.6445841< T, < 3.6445842
3.6437802< T, < 3.6437803

1.7

13551518< 7, < 1.3551519
13450668< T. < 1.3450669
13425746< T, < 1.3425747

19

(900 3588< T. < 0.900 3589
B837778< T, < 0.8837779
0B792225< T, < 0.8792226

2.0

w

0.7080135< T. < 0.708 0136
0.6852775< T, < 0.6852776
0.6782743< T, < 0.6782744

0603 0525< T, < 0.603 0526
6745416< T, < 0.5745417
664 8170< T. < 0.5648171

(666 9288< T, < 0.566 9289
(B6356836< T. < 0.5356837
(624 5462< T. < 0.5245463

Barber and Hamer [18] show that a good choice for the valug,ab be

for N =

_A-cnM

oy = 2
0,1,2, ...

11)
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Table 7. ¢ = 2 critical temperature approximations and comparison approximations from [1, 3, 6].

Finite-size scaling

(site clusters) [1] [3] [6]
VBS Monte Carlo  Finite-range  Renormalization

0 1,35 3,57 57,9 algorithm simulations  scaling group

1.1 20.974657 20.995717 20.998772 20.999980 21.00099 21.574 20.80

1.3 7.185350 7.309106  7.328920  7.343983  7.34700 7.360 6.96

1.5 3.943302 4.260 158 4.312019 4.363423 4.363 84 4.358 4.00

1.7 2.166 314 2.739555 2.831724 2.933701 2.926 1.56

1.9 0.959962 1775108 1.897363  2.037690 2.006 1.54

2.0 0.516 866 1.418892 1.553237 1.696 394 1.626

Table 8. ¢ = 3 critical temperature approximations and comparison approximations from [3, 6].

Finite-size scaling

(site clusters) [3] [6]

VBS Finite-range Renormalization
0 1,35 35,7 5,79 algorithm scaling group
1.1 7.5891 7.5935 7.5941 7.594 31 7.353 6.72
1.3 2.6860 2.7095 2.7134 2.716 69 2.589 2.33
15 1.6044 1.6637 1.6744 1.68542 1.663 141
1.7 1.041 1.154 1.174 1.1968 1.194 0.95
1.9 0.639 0.816 0.845 0.8785 0.874 0.61
2.0 0.471 0.681 0.713 0.7483 0.742

Table 9. ¢ = 4 critical temperature approximations and comparison approximations from [3, 6].

Finite-size scaling

(site clusters) [3] [6]

VBS Finite-range Renormalization
0 1,35 35,7 5,79 algorithm scaling group
11 6.39284 6.39555 6.39588 6.39599 4.926 5.16
13 2.29006 2.30373 2.30603 2.30784 2.045 1.89
1.5 1.40768 1.442 36 1.44875 1.45521 1.403 1.14
1.7 0.9639 1.0312 1.0437 1.0577 1.048 0.78
1.9 0.6484 0.7592 0.7780 0.7996 0.797 0.51
2.0 0.5124 0.6474 0.6689 0.6918 0.694

Using the VBS algorithm, we see from table 7 that, now, from our five-cluster sequence
we obtain an estimate df. which agrees with the results of [1] to five-figure accuracy for
6 = 1.1 rather than the four-figure agreement found using the finite-scaling-like approach.
Going on tod = 1.3 and 1.5 we have at least three-figure agreement which betters the results
of [3] for these twa values. Since Luijten and Ble only consider the ‘classical regime’ of the
one-dimensional ferromagnetic Ising model, that is tifogalues where the critical exponents
take on their classical values, we can make no comparison béyentl5. We have no doubt
that our results become less accurate mereases. It should be pointed out that the difference
between the results using equation (7) and the VBS algorithm incredsea®gases.

The particular case &f = 2.0 has received by far the most attention, and while estimates
having the five- and six-figure accuracy of the ‘classical regime’ are not available, to gain some
idea of the accuracy of our method in this case we quote the following results. Monte Carlo
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Table 10. g = 5 critical temperature approximations and comparison approximations from [3] and
the mean-field approximation.

Finite-size scaling

(site clusters) [3]

VBS Finite-range Mean-field
0 1,3,5 3,5,7 57,9 algorithm scaling results
11 5.703 96 5.70585 5.706 11 5.706 18 3.57 5.726
1.3 2.056 84 2.066 26 2.06783 2.06900 1.736 2.127
15 1.28358 1.30754 1.31200 1.31638 1.245 1.413
1.7 0.90364 0.95083 0.95954 0.96963 0.956 1.111
1.9 0.63722 0.71683 0.73076 0.746 73 0.745 0.9466
2.0 0.52115 0.61985 0.63589 0.65302 0.659 0.8899

Table 11. g = 8 and 16 critical temperature approximations and comparison approximations from
[3] and the mean-field approximation.

(3]
1,3and 5 VBS Finite-range Mean-field

6 site clusters algorithm scaling results
(@

1.1 4.6497 4.6530 2.08 4.6623
1.3 1.6929 1.7047 1.32 1.7320
15 1.0789 1.1059 1.01 1.1507
17 0.7891 0.8427 0.806 0.9049
1.9 0.5939 0.6915 0.649 0.7707
2.0 0.5092 0.6373 0.589 0.7246
(b)

1.1 3.6422 3.6435 1.28 3.6479
1.3 1.3373 1.3418 0.98 1.3552
15 0.8673 0.8775 0.79 0.9004
17 0.6542 0.6752 0.649 0.7080
1.9 0.5192 0.5598 0.543 0.6031
2.0 0.4629 0.5184 0.5008 0.5669

results of Bhattacharjeet al [19] give T. ~ 1.587 and high-temperature series expansion
results of Matvienko [20] givd,. ~ 1.522. Many other estimates can be found in [21] where
the present author has obtained a rigorous upper bound of the critical temperature which shows
T, < 1.636. The procedures used in [6] gifie= 72/6 ~ 1.645 for thed = 2.0 case and [3]
hasT, ~ 1.626, while our results arE. ~ 1.552 using the best of the results from equation (7)
andT. ~ 1.696 using the VBS algorithm. The fact that our two results, one based on the 5,
7, 9 sequence with equation (5) and the other on the VBS algorithm, differ by such a large
amount indicates the lack of accuracy by the time we appréael?.0.

Based on thg = 2 results in comparison with those of [1] and with the results of [9, 10]
indicating that we should have greater accuracy ascreases, we believe, for= 1.1 we
have at least four-figure accuracy whes- 2 and that the accuracy decreases to three figures
by the timed has increased to 1.5. When we go to the casgse# andg = 16 (see table 11)
we are hampered by the memory requirements of our computer methods and have only been
able to consider up to five-site clusters. Nevertheless, we believe our results foxtlies
cases to be more accurate than any previously obtained.
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4. Conclusions

With any approximation, the accuracy of the results and the amount of work necessary to obtain
them are the two important characteristics. We have shown that a cluster mean-field method in
conjunction with various extrapolation methods is likely to provide the most accurate estimates
currently available of the critical temperature of Potts models on one-dimensional lattices and
having ferromagnetic algebraically decaying interactions with 1.5. Also, our results seem

to show that the finite-range method works best when the above method works poorest. The
fact that all the work reported was done on a personal computer and done in a matter of minutes
or hours indicates that this method does not require a significant amount of hardware or undue
amount of time.

Equally importantly, we see that the method of determining the transition temperatures
based on the stability of the fixed points which was motivated by a dynamical-systems study
of the Potts model on the Bethe lattice [13] is clearly of use here. As stated earlier for the
one-site cluster, i.e. the usual mean-field approximation, we know by direct comparison with
the results of Kiharat al [12] for the next-nearest-neighbour case in any dimension that this
method exactly duplicates the usual free-energy approach. This criteria has allowed us to
by-pass the rather complicated computation of a free energy. This then gives us a class of
systems, in addition to those listed in [13] where the approach is successful.
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