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Abstract. We obtain approximations for the critical temperature(Tc) of q-state ferromagnetic
Potts models on one-dimensional lattices with algebraically decaying ferromagnetic pair
interactions, i.e. decaying as 1/rθ , with 1< θ 6 2. Initially we use a cluster mean-field method
to get approximations to the critical temperature and we look at increasingly large clusters. This
gives us a sequence of ever more accurate approximate values which can be used as input to various
extrapolation algorithms. We see that as the interaction decreases more slowly and the value of
q increases we obtain more and more accurateTc estimates. Our best estimates we believe to be
correct to four-figure accuracy.

1. Introduction

Much effort has gone into the investigation of one-dimensional Ising models with algebraically
decaying interactions. In a very recent paper Luijten and Blöte [1] in their introductory section
gave an excellent overview of the subject and its history over the last 30 years. One of the
major advances in the theory of such systems was made by Aizenmanet al [2]. In their work,
which concerned when a phase transition could be proven to be present or not present, they
found it useful to broaden the class of models they considered beyond those involving Ising
spin variables. Specifically they consideredq-state Potts models of which the Ising model is
a special case withq = 2.

In general, theq 6= 2 cases have received much less attention than theq = 2 case but very
recently there has been an increasing interest in these cases. Most of the work has involved
obtaining estimates of the critical temperature and critical exponents. In particular, Glumac
and Uzelac [3] have used what they termed a finite-range scaling method, Bernardes and
Goulart Rosa Jr [4] have generalized a Bethe approximation approach originally presented for
theq = 2 case [5] to allq values, and most recently, in this journal, Cannas and de Magalhaes
[6] have used a renormalization group approach. In addition to estimates of the critical
temperature Glumac and Uzelac [7] have recently shown, using Monte Carlo simulations
in combination with finite-size scaling, that for a givenq and for infinite-range interactions
falling off sufficiently slowly one has a first-order phase transition, while for more rapidly
decreasing interaction strengths one has a continuous phase transition.

We will present results which we believe to be more accurate estimates of the critical
temperature, for the case of very slowly decaying interactions, than any previously obtained.
We will use a cluster mean-field approach in combination with certain extrapolation techniques.
We base our belief in the accuracy of our results on two facts. Firstly, there is the very good
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comparison of our results [8] for theq = 2 case with those of Luijten and Blöte [1]. Critical
temperature estimates in [1] for the special case of the Ising model are accurate to six significant
figures. For very slowly decaying interactions our results in [8] match this level of accuracy.
Second, Pearce and Griffiths [9] have shown that mean-field approximations become more
accurate asq increases and in the limitq →∞ are exact (see also Katori [10]).

Here we present results for theq = 2, 3, 4, 5, 8, and 16 cases. We present theq = 2
results only to test the approach by comparing values with those of [1]. In the following section
we present the basis of our method along with the necessary notation, while in section 3 we
present our results. Some conclusions follow in section 4.

2. Cluster mean-field approximation and extrapolation techniques

We start with a one-dimensional lattice of sites where on theith site we have a spin variable
σi whereσi = 1, 2, . . . , q. The Hamiltonian for ourq-state Potts model can be written as

H = −
∑
i<j

J

|i − j |θ δ(σi, σj ) (1)

where|i − j | is the distance between sitesi andj and with the distance between adjacent
sites set equal to one. We consider only the ferromagnetic case, i.e.J > 0. The Kronecker
delta interaction may be represented in various ways, one of which is by a dot product of two
(q − 1)-dimensional vectors pointing in theq symmetric directions of a (q − 1)-dimensional
hyper-tetrahedron. For more on this formulation of the Hamiltonian and a general review of
the Potts model, see Wu [11]. The order parameter for the general Potts model is

Mq(σi) = q

q − 1

〈
δ(σi, 1)− 1

q

〉
(2)

where the thermal average of the Kronecker delta function is given in the usual way by

〈δ(σi, 1)〉 = Z−1
∑
{σ }
δ(σi, 1) exp(−βH({σ })) (3)

whereZ is the partition function, the sum is over all configurations denoted as{σ }, and
β = 1/kT .

To obtain estimates of the critical temperature for these systems we use a cluster mean-
field approach. We treat interactions between two spins in the cluster exactly and we replace
all interactions between a site in the cluster, here sitei, and a site outside the cluster, here site
j , with a mean-field interaction: e.g.,Jij δ(σi, σj ) is replaced byJij M̄qδ(σi, 1) where

M̄q = q

q − 1

(
M− 1

q

)
. (4)

Then in the usual mean-field manner we require

〈δ(σc, 1)〉 =M (5)

wherec denotes the centre site of the cluster. For the three-site cluster we have

H(σ1, σ2, σ3) = −J [δ(σ1, σ2) + δ(σ2, σ3)] − J

2θ
δ(σ1, σ3)− JM̄q(δ(σ1, 1) + δ(σ3, 1))

×
[ ∞∑
n=1

1

nθ
+
∞∑
n=3

1

nθ

]
− JM̄qδ(σ2, 1)

[
2
∞∑
n=2

1

nθ

]
. (6)

For ann-site system using the Hamiltonian analogous to that given in (6) one can obtain an
expression for the left-hand side of (5) using (3). Then we find all values ofM satisfying (5).
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At high temperatures there is only one value ofM satisfying (5) and this givesM = 1/q
which is the disordered state. As we lower the temperature there comes a point when two
more solutions of (5) become present. When more than one solution is available one must
determine which solution is the ‘correct’ solution. One way of determining this is to calculate
the single-site free energy for each solution and choose the solution which corresponds to
the minimum free energy. This is the approach of Kiharaet al [12]; see also Wu [11]. The
calculation of the free energy can be quite difficult. We prefer to think of (5) as a fixed-point
equation and at low enough temperatures there will be more than one fixed point. When this
is the case one must determine which fixed point is the ‘correct’ fixed point. Rather than
consider the free energy we use a criterion which is much simpler to apply and which was
first announced, to our knowledge, in [13]. Specifically, we require the system to go to that
solution which has the ‘most stable fixed point’ of the fixed-point solutions of (5). By ‘most
stable fixed point’ we mean that fixed-point value which has associated with it the minimum
absolute value of the derivative with respect toM of the left-hand side of (5) of all fixed-point
solutions to (5). One can easily show that for the one-site cluster, i.e. the standard mean-field
approximation first given by Kiharaet al [12], the results by this method are identical with
those given by the free-energy approach. This method has also been shown to be effective
when studying the Potts model on the Bethe lattice and gives the same critical temperatures
as the free-energy approaches given by di Libertoet al [14] and Ananikyan and Akheyan
[15]. It has also been shown to deal with Ising spin systems with multi-site interactions [13].
Not having to obtain expressions for free energies and, rather, only having to determine the
derivative of the left-hand side of (5) evaluated at the fixed-point value makes the determining
of the critical temperatures much easier.

As is typical in the case of mean-field approximations we have, first, that the mean-field
critical temperature is too high and, second, that by considering larger and larger clusters we
obtain better and better estimates of the critical temperature. Our philosophy in this paper
has been to concentrate on the general method and such characteristics as the accuracy of our
approximations as a function ofq rather than emphasizing a pushing of the method with large
computer times. Here we have restricted our calculations to those that can be done on a personal
computer. We have used Mathematica for all computations. In the following we use clusters of
size 1, 3, 5, 7, and 9 sites forq = 2, 3, 4 and 5. Asq becomes larger the calculations involved
in evaluating ann-site cluster quickly grow. We have looked atq = 8 and 16 but have obtained
results for 1-, 3-, and 5-site clusters. We have made a much more thorough investigation of the
q = 2 case [8] using clusters of up to 25 sites and, as stated earlier, present someq = 2 results
here only because they can be compared with the very accurate results obtained by Luijten and
Blöte [1]. Hence they can be used as a general indicator of the accuracy of our methods.

Not only is it true that the larger the cluster size the more accurate the estimate of the true
critical temperature one obtains but, furthermore, if estimates are obtained for three different
cluster sizes and one assumes a simple power law correction of the form

Tc(L)
∼= T ∗c + aL−τ (7)

this can be used to get an even better estimate of the critical temperature. In (7)Tc(L) is the
critical temperature for the cluster sizeL, T ∗c is the exact critical temperature anda andτ are
constants.

Still greater accuracy can be obtained if more than threeTc(L) are available by applying
various extrapolation techniques. In particular, we present results based on the Vanden Broeck
and Schwartz transformations (hereafter VBS) [16] introduced into statistical mechanics by
Hamer and Barber [17]. The details of this algorithm along with our results are given in the
following section.
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Table 1. q = 2 cluster mean-field critical temperature approximations.

Cluster θ

size
(sites) 1.1 1.3 1.5

1 21.168 8969< Tc < 21.168 8970 7.863 8984< Tc < 7.863 8985 5.224 7506< Tc < 5.224 750 7
3 21.078 1950< Tc < 21.078 1951 7.633 9568< Tc < 7.633 9569 4.893 0790< Tc < 4.893 079 1
5 21.051 9341< Tc < 21.051 9342 7.555 4363< Tc < 7.555 4364 4.769 6027< Tc < 4.769 602 8
7 21.039 3905< Tc < 21.039 3906 7.514 3954< Tc < 7.514 3955 4.701 7431< Tc < 4.701 743 2
9 21.031 9940< Tc < 21.031 9941 7.488 6715< Tc < 7.488 6716 4.657 7098< Tc < 4.665 777 10

1.7 1.9 2.0

1 4.108 5775< Tc < 4.108 5776 3.499 4928< Tc < 3.499 4929 3.289 8681< Tc < 3.289 8682
3 3.700 1256< Tc < 3.700 1257 3.031 9264< Tc < 3.031 9265 2.797 8432< Tc < 2.797 8433
5 3.540 6578< Tc < 3.540 6579 2.844 8782< Tc < 2.844 8783 2.599 8101< Tc < 2.599 8102
7 3.450 3708< Tc < 3.450 3709 2.737 1409< Tc < 2.737 1410 2.485 1717< Tc < 2.485 1718
9 3.390 5201< Tc < 3.390 5202 2.664 7585< Tc < 2.664 7586 2.407 8178< Tc < 2.407 8179

3. Results

We first present the critical temperature values obtained for clusters of sizes 1, 3, 5, 7, and 9
sites using the mean-field cluster approximation approach. These are given in tables 1–4 for
q = 2–5, respectively. Similar results are given in tables 5 and 6 forq = 8 andq = 16 but
only for clusters of up to five sites. For theq = 2 case we have presented our results using the
usual Ising model Hamiltonian

H = −
∑
i<j

J

|i − j |θ σiσj (8)

whereσ = ±1. To convert these to critical temperatures which would be obtained using the
Pott’s model representation for the Hamiltonian, equation (1), one needs to merely divide the
critical temperatures given in table 1 by a factor of two. Only results involving up to 5-site
clusters rather than up to 25-site clusters given in [8] have been presented because this is the
level generally available for theq > 2 cases. We have considered six values ofθ : 1.1, 1.3, 1.5,
1.7, 1.9, and 2.0. Our results using equation (7) with sequences of site clusters 1, 3, 5 and 3,
5, 7, and 5, 7, 9 are given in tables 7–10 forq = 2–5, respectively. These results are labelled
FSS results although, technically they do not involve finite-size scaling.

For the case ofq = 2 and in the region where the system has a classical behaviour, i.e.
1 < θ 6 1.5, we can compare our results to those of Luijten and Blöte [1]. One sees that
though we have only considered clusters up to nine sites for the very slowly decaying case
we obtain reasonable agreement with the results of [1]. Forθ = 1.1 we get a four-figure
agreement with the results of [1]. In table 7 we have also listed the results from [3, 6]. For
all values ofθ and using the 5, 7, 9 site cluster sequence our estimates are more accurate than
those presented in [6] using the renormalization group. For those of [3], i.e. those found using
finite-range scaling, our estimates are more accurate forθ = 1.1, about equally accurate for
θ = 1.3, and less accurate for the otherθ cases. The decrease in accuracy of our results as
θ increases is to be expected as a product of the mean-field approximation but as shown in
[9, 10] this will be counteracted to some extent asq increases.

Before going to theq 6= 2 cases we wish to present some details of the extrapolation
algorithm mentioned at the end of the previous section. The algorithm takes the critical
temperature estimates of the various cluster sizes as input and reduces this set of data to a
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Table 2. q = 3 cluster mean-field critical temperature approximations.

Cluster θ

size
(sites) 1.1 1.3 1.5

1 7.635 0656< Tc < 7.635 0657 2.836 3018< Tc < 2.836 3019 1.884 4303< Tc < 1.884 4305
3 7.611 8335< Tc < 7.611 8336 2.775 1018< Tc < 2.775 1019 1.793 4827< Tc < 1.793 4828
5 7.605 4836< Tc < 7.605 4837 2.755 8723< Tc < 2.755 8724 1.761 9248< Tc < 1.761 9249
7 7.602 5533< Tc < 7.602 5534 2.746 3979< Tc < 2.746 3980 1.745 4579< Tc < 1.745 4580
9 7.600 8675< Tc < 7.600 8676 2.740 7293< Tc < 2.740 7294 1.735 2139< Tc < 1.735 2140

1.7 1.9 2.0

1 1.481 8561< Tc < 1.481 8562 1.262 1752< Tc < 1.262 1753 1.186 569 1 < Tc < 1.186 659 2
3 1.367 1248< Tc < 1.367 1429 1.128 2163< Tc < 1.128 2164 1.044 390 9 < Tc < 1.044 391 0
5 1.324 4864< Tc < 1.324 4865 1.076 1482< Tc < 1.076 1483 0.988 279 94< Tc < 0.988 279 95
7 1.301 1781< Tc < 1.301 1782 1.046 6966< Tc < 1.046 6967 0.956 143 32< Tc < 0.956 143 33
9 1.286 1575< Tc < 1.286 1576 1.027 1798< Tc < 1.027 1799 0.934 619 35< Tc < 0.934 619 36

Table 3. q = 4 cluster mean-field critical temperature approximations.

Cluster θ

size
(sites) 1.1 1.3 1.5

1 6.422 9201< Tc < 6.422 9202 2.386 0096< Tc < 2.386 0097 1.585 2576< Tc < 1.585 2577
3 6.407 1994< Tc < 6.407 1995 2.343 6179< Tc < 2.343 6180 1.521 0860< Tc < 1.521 0861
5 6.403 0214< Tc < 6.403 0215 2.330 8998< Tc < 2.330 8999 1.499 7424< Tc < 1.499 7425
7 6.401 1231< Tc < 6.401 1232 2.324 8285< Tc < 2.324 8286 1.488 9523< Tc < 1.488 9524
9 6.400 0425< Tc < 6.400 0426 2.321 2825< Tc < 2.321 2826 1.482 4112< Tc < 1.482 4113

1.7 1.9 2.0

1 1.246 5961< Tc < 1.246 5962 1.061 791 8 < Tc < 1.061 791 9 0.998 189 00< Tc < 0.998 189 01
3 1.164 3908< Tc < 1.164 3909 0.964 560 00< Tc < 0.964 560 01 0.894 402 19< Tc < 0.894 402 20
5 1.1347 868< Tc < 1.134 7869 0.927 498 78< Tc < 0.927 498 79 0.854 010 89< Tc < 0.854 010 90
7 1.118 9811< Tc < 1.118 9812 0.906 819 96< Tc < 0.906 819 97 0.831 084 80< Tc < 0.831 084 81
9 1.108 9917< Tc < 1.108 9918 0.893 264 11< Tc < 0.893 264 12 0.815 833 55< Tc < 0.815 833 56

single, more accurate, value through a series of steps.
Using the notation of Hamer and Barber [17] one has for the general sequence

transformation that, given a sequence of valuesAL which converge to a limiting valueA∞, one
forms a table of approximants toA∞ denoted by [L,N ] where [L, 0] = AL and the(N + 1)th
column of approximants is generated from theN th and(N − 1)th columns via the formula

1

[L,N + 1]− [L,N ]
+

αN

[L,N − 1]− [L,N ]

= 1

[L + 1, N ] − [L,N ]
+

1

[L− 1, N ] − [L,N ]
(9)

with [L,−1] ≡ ∞. Again, following Hamer and Barber, we refer to these approximants as
VBS approximants.

The above defines a broad class of transformations based on the definition ofαN . For the
case where the sequence converges as

AL ≈ A∞ + b1L
−λ1 + b2L

−λ2 + · · · (10)
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Table 4. q = 5 cluster mean-field critical temperature approximations.

Cluster θ

size
(sites) 1.1 1.3 1.5

1 5.726 2992< Tc < 5.726 2993 2.127 2263< Tc < 2.127 2264 1.413 3228< Tc < 1.413 3229
3 5.714 2771< Tc < 5.714 3772 2.094 5192< Tc < 2.094 5193 1.363 1369< Tc < 1.363 1370
5 5.711 2665< Tc < 5.711 2666 2.085 0183< Tc < 2.085 0184 1.346 9549< Tc < 1.346 9550
7 5.709 8672< Tc < 5.709 8673 2.080 5807< Tc < 2.080 5808 1.338 9639< Tc < 1.338 9640
9 5.709 0760< Tc < 5.709 0761 2.078 0312< Tc < 2.078 0313 1.334 2120< Tc < 1.334 2121

1.7 1.9 2.0

1 1.111 3920< Tc < 1.111 3921 0.946 6314< Tc < 0.946 6315 0.889 9268< Tc < 0.889 9269
3 1.046 3696< Tc < 1.046 3697 0.868 9742< Tc < 0.868 9743 0.806 6764< Tc < 0.806 6765
5 1.023 5097< Tc < 1.023 5098 0.839 8340< Tc < 0.839 8341 0.774 6511< Tc < 0.774 6512
7 1.011 5291< Tc < 1.011 5292 0.823 7598< Tc < 0.823 7599 0.756 6175< Tc < 0.756 6176
9 1.004 0738< Tc < 1.004 0739 0.813 3193< Tc < 0.813 3194 0.744 6945< Tc < 0.744 6946

Table 5. q = 8 cluster mean-field critical temperature approximations.

Cluster θ

size
(sites) 1.1 1.3 1.5

1 4.662 2833< Tc < 4.662 2834 1.731 9618< Tc < 1.731 9619 1.150 7103< Tc < 1.150 7104
3 4.655 3130< Tc < 4.655 3131 1.712 1454< Tc < 1.712 1455 1.119 4543< Tc < 1.119 4544
5 4.653 5577< Tc < 4.653 5578 1.706 7456< Tc < 1.706 7457 1.109 9961< Tc < 1.109 9962

1.7 1.9 2.0

1 0.904 8819< Tc < 0.904 8820 0.770 7358< Tc < 0.770 7359 0.724 5676< Tc < 0.724 5677
3 0.863 4437< Tc < 0.863 4438 0.720 2533< Tc < 0.720 2534 0.669 9642< Tc < 0.669 9643
5 0.849 6063< Tc < 0.849 6064 0.701 9715< Tc < 0.701 9716 0.649 5276< Tc < 0.649 5277

Table 6. q = 16 cluster mean-field critical temperature approximations.

Cluster θ

size
(sites) 1.1 1.3 1.5

1 3.647 9451< Tc < 3.647 9452 1.355 1518< Tc < 1.355 1519 0.900 3588< Tc < 0.900 3589
3 3.644 5841< Tc < 3.644 5842 1.345 0668< Tc < 1.345 0669 0.883 7778< Tc < 0.883 7779
5 3.643 7802< Tc < 3.643 7803 1.342 5746< Tc < 1.342 5747 0.879 2225< Tc < 0.879 2226

1.7 1.9 2.0

1 0.708 0135< Tc < 0.708 0136 0.603 0525< Tc < 0.603 0526 0.566 9288< Tc < 0.566 9289
3 0.685 2775< Tc < 0.685 2776 0.574 5416< Tc < 0.574 5417 0.535 6836< Tc < 0.535 6837
5 0.678 2743< Tc < 0.678 2744 0.564 8170< Tc < 0.564 8171 0.524 5462< Tc < 0.524 5463

Barber and Hamer [18] show that a good choice for the value ofαN to be

αN = − [1− (−1)N ]

2
(11)

for N = 0, 1, 2, . . ..
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Table 7. q = 2 critical temperature approximations and comparison approximations from [1, 3, 6].

Finite-size scaling
(site clusters) [1] [3] [6]

VBS Monte Carlo Finite-range Renormalization
θ 1,3,5 3,5,7 5,7,9 algorithm simulations scaling group

1.1 20.974 657 20.995 717 20.998 772 20.999 980 21.000 99 21.574 20.80
1.3 7.185 350 7.309 106 7.328 920 7.343 983 7.347 00 7.360 6.96
1.5 3.943 302 4.260 158 4.312 019 4.363 423 4.363 84 4.358 4.00
1.7 2.166 314 2.739 555 2.831 724 2.933 701 2.926 1.56
1.9 0.959 962 1.775 108 1.897 363 2.037 690 2.006 1.54
2.0 0.516 866 1.418 892 1.553 237 1.696 394 1.626

Table 8. q = 3 critical temperature approximations and comparison approximations from [3, 6].

Finite-size scaling
(site clusters) [3] [6]

VBS Finite-range Renormalization
θ 1,3,5 3,5,7 5,7,9 algorithm scaling group

1.1 7.5891 7.5935 7.5941 7.594 31 7.353 6.72
1.3 2.6860 2.7095 2.7134 2.716 69 2.589 2.33
1.5 1.6044 1.6637 1.6744 1.685 42 1.663 1.41
1.7 1.041 1.154 1.174 1.1968 1.194 0.95
1.9 0.639 0.816 0.845 0.8785 0.874 0.61
2.0 0.471 0.681 0.713 0.7483 0.742

Table 9. q = 4 critical temperature approximations and comparison approximations from [3, 6].

Finite-size scaling
(site clusters) [3] [6]

VBS Finite-range Renormalization
θ 1,3,5 3,5,7 5,7,9 algorithm scaling group

1.1 6.392 84 6.395 55 6.395 88 6.395 99 4.926 5.16
1.3 2.290 06 2.303 73 2.306 03 2.307 84 2.045 1.89
1.5 1.407 68 1.442 36 1.448 75 1.455 21 1.403 1.14
1.7 0.9639 1.0312 1.0437 1.0577 1.048 0.78
1.9 0.6484 0.7592 0.7780 0.7996 0.797 0.51
2.0 0.5124 0.6474 0.6689 0.6918 0.694

Using the VBS algorithm, we see from table 7 that, now, from our five-cluster sequence
we obtain an estimate ofTc which agrees with the results of [1] to five-figure accuracy for
θ = 1.1 rather than the four-figure agreement found using the finite-scaling-like approach.
Going on toθ = 1.3 and 1.5 we have at least three-figure agreement which betters the results
of [3] for these twoθ values. Since Luijten and Blöte only consider the ‘classical regime’ of the
one-dimensional ferromagnetic Ising model, that is thoseθ values where the critical exponents
take on their classical values, we can make no comparison beyondθ = 1.5. We have no doubt
that our results become less accurate asθ increases. It should be pointed out that the difference
between the results using equation (7) and the VBS algorithm increase asθ increases.

The particular case ofθ = 2.0 has received by far the most attention, and while estimates
having the five- and six-figure accuracy of the ‘classical regime’ are not available, to gain some
idea of the accuracy of our method in this case we quote the following results. Monte Carlo
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Table 10.q = 5 critical temperature approximations and comparison approximations from [3] and
the mean-field approximation.

Finite-size scaling
(site clusters) [3]

VBS Finite-range Mean-field
θ 1,3,5 3,5,7 5,7,9 algorithm scaling results

1.1 5.703 96 5.705 85 5.706 11 5.706 18 3.57 5.726
1.3 2.056 84 2.066 26 2.067 83 2.069 00 1.736 2.127
1.5 1.283 58 1.307 54 1.312 00 1.316 38 1.245 1.413
1.7 0.903 64 0.950 83 0.959 54 0.969 63 0.956 1.111
1.9 0.637 22 0.716 83 0.730 76 0.746 73 0.745 0.9466
2.0 0.521 15 0.619 85 0.635 89 0.653 02 0.659 0.8899

Table 11. q = 8 and 16 critical temperature approximations and comparison approximations from
[3] and the mean-field approximation.

[3]
1,3 and 5 VBS Finite-range Mean-field

θ site clusters algorithm scaling results

(a)
1.1 4.6497 4.6530 2.08 4.6623
1.3 1.6929 1.7047 1.32 1.7320
1.5 1.0789 1.1059 1.01 1.1507
1.7 0.7891 0.8427 0.806 0.9049
1.9 0.5939 0.6915 0.649 0.7707
2.0 0.5092 0.6373 0.589 0.7246
(b)
1.1 3.6422 3.6435 1.28 3.6479
1.3 1.3373 1.3418 0.98 1.3552
1.5 0.8673 0.8775 0.79 0.9004
1.7 0.6542 0.6752 0.649 0.7080
1.9 0.5192 0.5598 0.543 0.6031
2.0 0.4629 0.5184 0.5008 0.5669

results of Bhattacharjeeet al [19] give Tc ≈ 1.587 and high-temperature series expansion
results of Matvienko [20] giveTc ≈ 1.522. Many other estimates can be found in [21] where
the present author has obtained a rigorous upper bound of the critical temperature which shows
Tc < 1.636. The procedures used in [6] giveTc = π2/6≈ 1.645 for theθ = 2.0 case and [3]
hasTc ≈ 1.626, while our results areTc ≈ 1.552 using the best of the results from equation (7)
andTc ≈ 1.696 using the VBS algorithm. The fact that our two results, one based on the 5,
7, 9 sequence with equation (5) and the other on the VBS algorithm, differ by such a large
amount indicates the lack of accuracy by the time we approachθ = 2.0.

Based on theq = 2 results in comparison with those of [1] and with the results of [9, 10]
indicating that we should have greater accuracy asq increases, we believe, forθ = 1.1 we
have at least four-figure accuracy whenq > 2 and that the accuracy decreases to three figures
by the timeθ has increased to 1.5. When we go to the cases ofq = 8 andq = 16 (see table 11)
we are hampered by the memory requirements of our computer methods and have only been
able to consider up to five-site clusters. Nevertheless, we believe our results for theθ < 1.5
cases to be more accurate than any previously obtained.
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4. Conclusions

With any approximation, the accuracy of the results and the amount of work necessary to obtain
them are the two important characteristics. We have shown that a cluster mean-field method in
conjunction with various extrapolation methods is likely to provide the most accurate estimates
currently available of the critical temperature of Potts models on one-dimensional lattices and
having ferromagnetic algebraically decaying interactions withθ 6 1.5. Also, our results seem
to show that the finite-range method works best when the above method works poorest. The
fact that all the work reported was done on a personal computer and done in a matter of minutes
or hours indicates that this method does not require a significant amount of hardware or undue
amount of time.

Equally importantly, we see that the method of determining the transition temperatures
based on the stability of the fixed points which was motivated by a dynamical-systems study
of the Potts model on the Bethe lattice [13] is clearly of use here. As stated earlier for the
one-site cluster, i.e. the usual mean-field approximation, we know by direct comparison with
the results of Kiharaet al [12] for the next-nearest-neighbour case in any dimension that this
method exactly duplicates the usual free-energy approach. This criteria has allowed us to
by-pass the rather complicated computation of a free energy. This then gives us a class of
systems, in addition to those listed in [13] where the approach is successful.
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